Tachykinin-related peptides in invertebrates: a review.
نویسنده
چکیده
Peptides with sequence similarities to members of the tachykinin family have been identified in a number of invertebrates belonging to the mollusca, echiuridea, insecta and crustacea. These peptides have been designated tachykinin-related peptides (TRPs) and are characterized by the preserved C-terminal pentapeptide FX1GX2Ramide (X1 and X2 are variable residues). All invertebrate TRPs are myostimulatory on insect hindgut muscle, but also have a variety of additional actions: they can induce contractions in cockroach foregut and oviduct and in moth heart muscle, trigger a motor rhythm in the crab stomatogastric ganglion, depolarize or hyperpolarize identified interneurons of locust and the snail Helix and induce release of adipokinetic hormone from the locust corpora cardiaca. Two putative TRP receptors have been cloned from Drosophila; both are G-protein coupled and expressed in the nervous system. The invertebrate TRPs are distributed in interneurons of the CNS of Limulus, crustaceans and insects. In the latter two groups TRPs are also present in the stomatogastric nervous system and in insects endocrine cells of the midgut display TRP-immunoreactivity. In arthropods the distribution of TRPs in neuronal processes of the brain displays similar patterns. Also in coelenterates, flatworms and molluscs TRPs have been demonstrated in neurons. The activity of different TRPs has been explored in several assays and it appears that an amidated C-terminal hexapeptide (or longer) is required for bioactivity. In many invertebrate assays the first generation substance P antagonist spantide I is a potent antagonist of invertebrate TRPs and substance P. Locustatachykinins stimulate adenylate cyclase in locust interneurons and glandular cells of the corpora cardiaca, but in other tissues the putative second messenger systems have not yet been identified. The heterologously expressed Drosophila TRP receptors coupled to the phospholipase C pathway and could induce elevations of inositol triphosphate. The structures, distributions and actions of TRPs in various invertebrates are compared and it is concluded that the TRPs are multifunctional peptides with targets both in the central and peripheral nervous system and other tissues, similar to vertebrate tachykinins. Invertebrate TRPs may also be involved in developmental processes.
منابع مشابه
Tachykinin-related peptides modulate odor perception and locomotor activity in Drosophila.
The invertebrate tachykinin-related peptides (TKRPs) constitute a conserved family, structurally related to the mammalian tachykinins, including members such as substance P and neurokinins A and B. Although their expression has been documented in the brains of insects and mammals, their neural functions remain largely unknown, particularly in behavior. Here, we have studied the role of TKRPs in...
متن کامل1. Endocrinology and neuroendocrinology of protochordates: Evolutionary views and potentials as new model organisms
The critical phylogenetic position of ascidians suggests that evolutionary origins of neuropeptides and hormones of vertebrates are highly likely to be conserved in ascidians, and the cosmopolitan species, Ciona intestinalis, is expected to be an excellent deuterostome invertebrate model for studies on neuropeptides and hormones of vertebrates. Nevertheless, molecular and functional characteriz...
متن کاملFactors that regulate insulin producing cells and their output in Drosophila
Insulin-like peptides (ILPs) and growth factors (IGFs) not only regulate development, growth, reproduction, metabolism, stress resistance, and lifespan, but also certain behaviors and cognitive functions. ILPs, IGFs, their tyrosine kinase receptors and downstream signaling components have been largely conserved over animal evolution. Eight ILPs have been identified in Drosophila (DILP1-8) and t...
متن کاملDistribution of pigment dispersing hormone- and tachykinin-related peptides in the central nervous system of the copepod crustacean Calanus finmarchicus.
Peptides represent the largest class of signaling molecules used by nervous systems, functioning as locally-released paracrines and circulating hormones in both invertebrates and vertebrates. While many studies have focused on elucidating peptidergic systems in higher crustaceans, little is known about neuropeptides in the more primitive crustacean taxa. Here, we have begun an investigation of ...
متن کاملThe tachykinin peptide family.
The tachykinin peptide family certainly represents one of the largest peptide families described in the animal organism. So far, more than 40 tachykinins have been isolated from invertebrate (insects, worms, and molluscs), protochordate, and vertebrate (skin, gastrointestinal tract, peripheral and central nervous system) tissues. Substance P (SP), first identified by bioassay as early as 1931 b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Peptides
دوره 20 1 شماره
صفحات -
تاریخ انتشار 1999